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APPLICATIONS OF HOLOGRAPHY TO VIBRATIONS,
TRANSIENT RESPONSE, AND WAVE PROPAGATION

David A. Evensen
and

Robert Aprahamian

TRW Systems Group

SUMMARY

Holography is a lensless imaging technique which allows the reconstruc-
tion of three-dimensional images. A related technique, called holographic
interferometry, allows one to measure static or dynamic displacements on
the order of a wavelength of light. The present report is concerned with
the application of these holographic techniques to three areas of applied
mechanics: (i) high-frequency vibrations of beams and plates, (ii)
transient response measurements, and (iii) studies of transverse wave
propagation.

High-Frequency Vibrations

Time—average holography was used to identify over 30 transverse vibra-
tion modes of a cantilever beam. The fundamental frequency of the beam
was 9 cps, and the highest mode identified was at 100,000 cps. Photographs
of beam vibration modes are included herein. Similar tests were run using
8" x 10™ simply-supported plate, and stored-beam holographic interferometry
was used to identify the plate vibration modes in real time. The funda-
mental frequency of the plate was 162 cps, and over 100 modes were identi-
fied using holography at frequencies up to 76,768 cps. Photographs were
made of selected modes, and several are included herein. The experimental
patterns for the vibrating plate are readily interpreted, and the rapid,
graphic display of the mode shapes in real-time makes these holographic
techniques very attractive. To emphasize these features of holography, a
10-minute sound movie entitled "Vibration Analysis Using Holographic
Interferometry" was produced. Motion-picture film supplement L-1081 has
been prepared and is available on loan. A request card and a description
of the film are included at the back of this document.

The high-frequency vibration studies demonstrated that holography is
a new and useful tool for vibration analysis. At frequencies of 50,000
cps and above, vibration patterns were obtained for modes which had not
been observed by any other means. The experimental data agreed well with
vibration theories which include rotatory inertia and shear effects; the
experiments provided verification of these theories at high frequencies.



A possible drawback with the use of time-average holography for some
applications is a restriction to small amplitude vibrations. For large
vibration amplitudes, the interference fringes can crowd together and
become difficult to interpret. In addition, time-average holography re-
quires that the optical system be isolated from background noise and
vibration. Exploratory studies reported herein indicate that these two
difficulties can be overcome by the use of pulsed laser holography. This
conclusion is supported by recent work using pulsed holography for large
amplitude vibrations of noisy subjects.

Transient Response

The transient respomse of a 20" cantilever beam was determined by
using the technique of stored-beam (real-time) holographic interferometry
combined with high-speed motion picture photography. A stored-beam holo-
gram of the cantilever beam was set up, and the beam was subjected to a
transverse impact at the tip. A high-speed motion picture camera was
placed behind the hologram to record the motion of the interference fringes
caused by the impact. The data contained on the movie film was reduced
frame-by-frame yielding the displacement-time history of several stationmns
along the length of the beam. The experimental results were compared with
analytical solutions for the transient response, and generally good
agreement was obtained.

The transient response test demonstrated the feasibility of a new
measuring technique which had not been used previously. This technique has
the advantages that no sensor need be attached to the structure, and that
data can be easily recorded over a large are of the structure. Displacement-
time histories of individual points on the structure can be obtained sub-
sequent to viewing the overall response. A disadvantage of the method is
that each movie frame must be examined individually, which turned out to be
a laborious task. This disadvantage can be partially overcome by using a
photocell—-and-counter technique, but this approach is still under develop-
ment.

Wave Propagation

The transverse wave propagation study was conducted using pulsed laser
holography. A bending wave was initiated in a long beam by impacting it in
the center with a ballistic pendulum. Interferograms of the bending pulse
were obtained at three distinctly separated. times, and changes in the pulse
shape were readily detected at the different times. Experimental plots of
the bending displacement vs. distance along the beam were obtained, and
these results were in good agreement with analytical results for the problem.

The wave propagation study provided the first photographs of a bending
wave propagating in a beam. Previous experiments using strain gages or
displacement pickups gave the response of the beam (at one point) as a
function of time. The present results provide the displacement as a
function of the distance along the beam (at a particular time). Further
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studies of wave propagation problems using holography appear quite pro-
mising, and pulsed laser holography will provide the basic experimental
technique for these studies.



1.0 INTRODUCTION

Holography is a lensless imaging process which allows the reconstruc-—
tion of three-dimensional images of diffuse objects (Refs. 1,2). A
related technique, known as holographic interferometry (Ref. 3), allows
the experimenter to measure static or dynamic displacements on the order
of a wavelength of the light used to make the holograms (Ref. 4). This
new experimental technique represents a powerful tool for studying problems
in experimental mechanics. Holographic interferometry has been applied
to such problems as wave propagation (Ref. 5), static stress measurements
(Ref. 6), and aerodynamic flow (Ref. 7,8). It was first applied to vibra-
tion analysis by Powell and Stetson (Ref. 9) in 1965, and it has been
extensively applied to steady-state vibrations since then (Refs. 10, 11,
12, 13).

The basic motivation of these early papers on the applications of
holography to vibrations was to demonstrate the feasibility and potential
of the technique. The main objective of the present investigation was to
exploit this potential in the areas of high-frequency vibrations, trans-
ient motions, and the propagation of transverse bending waves. At the
start of this work (1968) the following assessment was made with respect
to the state-of-the-art concerning high-frequency vibrations:

"With present non-holographic measurement techniques, it is possible
to experimentally determine the first 10 - 15 modes or so of a typical
beam (or beam-like structure). However, holography promises an increase
in measurement capability of two orders of magnitude; thus it appears
feasible to determine many more modes than was formerly possible. For
example, by using holography it may be possible to determine the first
50 - 100 modes of a beam, instead of only 10 - 15. An analagous situation
exists for plates, where it appears that it may be possible to find the
first 100 - 300 modes."

"For both beams and plates, shear deformation and rotatory inertia
can have a significant influence on the higher vibration modes. Using
Timoshenko beam theory, it is possible to estimate the alteratiomns in
mode shape due to these effects. By determining the higher vibration modes
experimentally (using holography) one would be in a position to make some
of the first direct comparisons between theory and experiment involving
shear deformation and rotatory inertia.”

In retrospect, now that the work has been completed, it is safe to
say that holography lived up to our expectations.

The work reported herein is divided into five main parts, as follows:
o Holography and Holographic Interferometry

o Steady-State Vibration Tests



o Transient Response Tests
o Wave Propagation Study
o Suggestions for Future Experiments

The section on holography is intended to explain the fundamentals of the
technique to vibration engineers and others not already familiar with the
sebject. The steady-state vibration tests include the results of high
frequency experiments on a 30-inch cantilever beam and an 8" x 10" simply-
supported rectangular plate. The fundamental frequency of the beam was 9
cps, and over thirty additional transverse modes were identified; the
corresponding resonant frequencies ranged from 500 cps to over 100,000
cps. The fundamental frequency of the simply-supported plate was 162

cps, and more than 100 plate modes were identified using stored-beam
interferometry, at frequencies as high as 76,768 cps. Many of these plate
modes were recorded on time-average holograms, and photographs from
several of the holograms are included herein. The experimental patterns
for the vibrating plate are readily interpreted, and they are even more
graphic than the well-known Chladni sand figures. The resonant frequencies
and mode shapes show good agreement with the theory, providing rotatory
inertia and shear effects are included for the higher modes. In addition
to being described herein, the results of the beam vibration studies are
detailed in Reference 14, and the plate results are reported in Reference
15.

Transient response tests were run using a 20-inch cantilever beam
and stored-beam holography. 1In this technique, live interference fringes
were formed when the beam was subjected to a transverse impact at the tip.
The rapid movement of the interference fringes was recorded using a high-
speed motion picture camera. By analyzing the motion of the fringes on
the movie film, the deflection time-history of the tip of the beam was
determined. The experimental time-history showed excellent agreement
with the calculated response of the beam; some of these transient results
were reported in Reference 16. The wave propagation study was conducted
using pulsed laser holography and a beam of rectangular cross-section
approximately 6 feet long. A transverse bending wave was initiated in the
beam by impacting it transversely with a ballistic pendulum. Double-
exposure holograms were made using a pulsed laser, which was triggered to
illuminate the beam as the bending wave propagated along it. The very
short pulse width of the laser (on the order of 10-8 sec.) was sufficient
to effectively "freeze'" the motion of the stress wave. Interferograms
were made with the wavefront at three successive locations along the
beam. From these interferograms, the lateral deflection of the beam was
determined as a function of position along the beam. These deflection
plots were very similar to amnalytical results for the problem.

The suggestions for future experiments include static applications
such as shell buckling and two-dimensional strain measurements as well as
further work in vibrations. The suggestions presented are accompanied by
preliminary data or references which appear promising for future applica-
tions of holography.



2.0 HOLOGRAPHY AND HOLOGRAPHIC INTERFEROMETRY

Introduction and Background

The term "holography" is used to describe a means of recording the
amplitudes and phases of waves, such as light waves or sound waves.
Holography originated with Gabor (Ref. 1) who pointed out the possibility
of recording (on a piece of photographic film) the amplitudes and phases
of coherent, monochromatic light waves transmitted through a transparent
object. By then projecting light through the photographic film (which is
called a "hologram") it is possible to reproduce a three-dimensional image
or the original object.

The reproduction of images as Gabor suggested became practical with
the advent of the laser as a source of monochromatic, coherent light. 1In
1964, Leith and Upatnieks (Ref. 2) demonstrated that a three-dimensional
image of an opaque object could be reconstructed in a manner similar to
that proposed by Gabor. Figure 1 shows a typical set-up of the apparatus
used in the Leith and Upatnieks holographic method.

Laser Laser
Source l Spatial Filter Source Spatial Filter
: ' y * S — irror
Mirror
Virtual
. Image Seen
Object by the
Observer
H
Hologra ologram
A
Observer
Figure 1 - Left: Image Recording Process

Right: Image Retrieval



In making the hologram, the light waves from the object (object beam)
interact with the light from the mirror (reference beam). When the light
from the mirror is in phase with the light from the object, the waves add;
conversely, the waves cancel one another when they are out of phase. This
type of interaction results in variations in the intensity of the light
striking the photographic film (these are spatial variations in intensity,
in the plane of the hologram.) Since photographic film reacts to the
intensity of light impinging on it, the exposed film gives a permanent
record of the interaction of the two light beams.

To reconstruct the image of the object from the hologram, the de-
veloped photographic film is illuminated with any monochromatic light
source, e.g., the original laser. Now the light interacts with the hologram,
and the result is a three-dimensional image of the original object. Such
a reconstructed image can be quite impressive, to say the least. For ex-
ample, Heflinger, Brooks, and Wuerker of TRW Systems have made a hologram
of a bullet in flight (Ref. 3). With the usual schlieren photographs of
a bullet, the shock waves appear as lines in the picture. From the holo-
gram, however, one is able to see the conical, three-dimensional nature of
the shock waves.

The reconstruction of images in this fashion can be described mathe-
matically as follows.

In the formation of the hologram, let the light coming from the object
be denoted by

0= A e?1 (2-1)

where A, is the real amplitude and ¢1 is the phase. The harmonic factor
eVt phas been omitted for convenience in Equation (2-1), and Al, ¢1 are to
be evaluated at the plane of the hologram. In a similar fashion, the light
from the reference beam which reaches the plane of the hologram can be
described by

R = Aei? (2-2)

The amplitude of the light impinging on the hologram is the sum of the ob-
ject beam plus the reference beam, which gives

U=0+R-= Alei¢1 + A2e1¢2 (2-3)

The hologram, which is a photographic plate, responds to the intensity of
the light. The light intensity in the plane of the hologram is given by



I = UU* = Ai + A% + AlA?_ei("’l"”z) + AlAze(¢2-¢l) (2-4)

where U* denotes the complex conjugate of U. Since the photographic film
responds to the intensity, I, a recording of Equation (2-4) is made by the
hologram.

When the hologram is re-illuminated by the reference beam (and the
object removed from the scene) the light transmitted by the hologram is
given by L = R (transmittance) = R(1-KI) where K is a constant; i.e.,

_ i 2, ,2 (9. -9,) 1(4,-9.) _
L A2e 2( - K[Al + A2 + A1A2e 1 27 + AlAZe 2 1 ]) (2-5)

Or, multiplying out the individual terms,

i¢ i¢ 2 1(2¢

2
2 - KAlAZe 1-KAAje

)
1A%e ! (2-6)

2 2
L= [l—K(Al + AZ)]A e

The first term in Equation (2-6) is equivalent to the original reference
beam Aje ¢2 but it has been modified by the scalar 1 - K(A + A ). The

second term contains Ale ¢1 and as such it is equivalent to the light

coming from the original object (multiplied by the scalar - KAZ)‘ Thus

it is the second term which gives rise to the reconstructed image of the
original object. The third term in Equation (2-6) represents a conjugate
wave, and it may be regarded as emanating from a fictitious but identical
object situated in a different plane.

This brief discussion of the mathematics behind the holographic pro-
cess contains only the bare essentials and neglects many of the technical
details involved. The reader interested in the details of the process
may want to consult recent text books (Refs. 17-19) or the original papers
(Refs. 1, 2); a more complete discussion of some useful equations related
to holography is given in Appendix A,

Holographic Interferometry and Pulsed Laser Holography

Although image reconstruction was one of the first applicatiomns of
holography, a technique that has more potential from a research standpoint
is "double-exposure holography,'" which is one form of holographic inter-
ferometry (Ref. 3). The essential ideas are as follows: first make a
hologram of the object you wish to examine; then subject the object to
loads which cause it to deform, and expose the same hologram for a second
time. Now when this "double-exposed hologram'" is developed and then



illuminated, two images are produced: one is from the undeformed body, the
other from the deformed body. These light waves (which form the two im-
ages) interact with one another, thereby creating interference fringe
patterns. By analyzing the fringe patterns, one can determine the surface
deformations of the body, which were caused by the applied load. Haines
and Hildebrand (Ref. 4) give expressions which show how to relate the
interference fringes with the surface deformations of the object. An
extensive mathematical description of holographic interferometry was pre-
sented recently in Ref. 20.

Holographic interferometry is exemplified by pulsed laser holography,
which was used herein to record a transverse wave propagating along a
beam. First the laser was pulsed once to expose the hologram showing a
stationary beam. Then a stress wave was initiated in the beam, and a
second pulse of the laser was timed to expose the hologram when the wave
had traveled part way along the beam. The resulting double-exposed holo-
gram was developed and its fringe pattern was analyzed to obtaim the shape
of the bending wave. A detailed discussion of these results is given in
Section 5, and they are mentioned here as an illustration of pulsed laser
holography.

Pulsed laser holography can be applied to vibration problems, and
such applications are discussed in Section 6. The more usual technique
(for steady-state vibrations) is time-average holography, which is dis-
cussed in the next section.

Time-Average Holography

To understand time—average holography, it is instructive to consider
the ordinary time-—-exposure photography of a vibrating object, such as a
swinging pendulum. As the pendulum swings back and forth, its velocity is
a maximum at the bottom of the swing and goes to zero when the pendulum
reaches its maximum displacement. In a time exposure of the swinging
pendulum, then, the film is exposed primarily where the velocity is zero
(at the extremes of the swing) and is exposed very little where the veloc-
ity is a maximum. A time-averaged hologram of a vibrating object is
directly analogous to the time exposure of the pendulum. First, the object
to be studied is set into vibration in one of its resonant modes. Then
a hologram is made by exposing the photographic plate for a "long" period
of time (e.g. several vibration periods). Because of the sinusoidal nature
of the vibration, the hologram is exposed primarily when the amplitude of
vibration is at its maximum (and the velocity is zero). The result is a
hologram which yields a fringe pattern that represents peak—to-peak dis-
placement in a normal mode. By analyzing the fringe pattern from such a
time—-average hologram it is possible to measure the surface displacements
of the vibrating body. An analysis of fringe patterns from time-average
holograms was first presented by Powell and Stetson (Ref. 9), who consid-
ered the case where the vibrations were normal to the surface being
examined. The analytical results involve the roots of Jo (the zero-

order Bessel function) and are discussed in Section 3.0.



Stored-Beam Holography

Stored-beam holography provides the experimenter with a visual means
of detecting and identifying vibration modes in real-time, and it was used
in the present study. This type of holography gives rise to "live" inter-
ference fringes, which shift and change as the object of interest moves
and deforms. In the live fringe method, a hologram of the undeformed,
stationary object is made and developed. This hologram is then very care-
fully put back in its original position, i.e., it is put back in the
photographic plate holder where it was originally held. The hologram is
then illuminated by the laser and reconstructs an image of the undeformed
object superimposed on the real object. Now suppose the object being
studied is allowed to deform: then the light from the deformed body
interacts with the stored image of the undeformed body (produced by the
hologram) and a live interference fringe pattern is formed.

When this live fringe technique is applied to an object which is
vibratinhg sinusoidally in a normal mode, the fringe pattern appears to be
stationary to the experimenter. In actuality, the fringe pattern shifts
and changes rapidly, but the human eye acts as a time—averaging device
and the fringe pattern seen by the observer is much like that from a time-
average hologram. A discussion of vibration analysis in real-time using
the stored-beam technique is given in Ref. 21. Other studies using real-
time holography are given in Ref. 22,

Another technique which uses stored-beam principles is stroboscopic
holographic interferometry (Ref. 23). In this technique, the laser beanm
is flashed periodically in synchronization with the vibration being ob-
served. A common procedure is to use a variable speed motor with a disc
mounted on it to interrupt the laser beam periodically. A hologram of
the stationary, undeformed object is also used in the stroboscopic method.
Although this technique was not used herein, it does have application to
vibration analysis and may be of interest to some readers; see Refs. 10,
23, and 24.
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3.0 STEADY-STATE VIBRATION TESTS

Summary

This section contains a description of the steady-state vibration
tests which were conducted on a cantilever beam and a simply-supported
rectangular plate. The beam tests are discussed first, followed by the
plate results. 1In both cases, the experimental set-up is presented and
followed by the test procedure. Some analytical considerations are re-
quired to interpret the experimental results, and a section is devoted to
each. The discussion concludes with a comparison of analysis with the
experiments. Experimental mode shapes are compared with analytical curves,
and frequency vs. mode number results are presented.

Beam Vibration Modal Survey

Experimental Set-Up. - The beam which was tested was an aluminum
(6061-T6) cantilever 30 inches long, 1 inch wide, and one—quarter of an
inch thick. The supported end was clamped to a steel support block in
such a fashion that the beam vibrated in a horizontal plane. The support
block was 8 inches long, 5 inches high, and 6 inches wide; it weighed
approximately 65 1lbs. and was simply placed on the granite table, not
cemented down.

With this arrangement, the fundamental frequency of the beam was
found to be 9 cps. 1In order to provide a diffuse optical surface, the
beam was subjected to a liquid honing process. -Liquid honing is a process
similar to shot-peening or sand-blasting, and it is commercially available
at many machine shops and specialty companies. The resulting surface has
a diffuse, satin finish, which can be uniformally illuminated without
highly reflective "hot spots."

The apparatus used to make the holograms of the cantilever is shown
schematically in Figure 2. Figure 3 is a photograph of the actual equip-
ment and layout. The light, 0, emitted by the laser is directed to a beam
splitter BS by means of the mirror, MlL. Three beams of light are emitted
from the beam splitter and designated as 01, 02, and R. Two of these, 01
and 02, are primary beams, which are used to illuminate the cantilevered
specimen. They are directed by means of mirrors, M2 and M3, respectively,
through a double set of diffusers, D1 and D2, onto the cantilever. The
third beam of light, R, is due to internal reflections in the beam splitter.
It is weak in intensity compared to 01 and 02 and is ideal to use as a
reference beam. It is directed by mirrors M4 and M5 to a spatial filter,
SF. The spatial filter consists of a 60X lens and a 6 micron pinhole.

The 60X lens brings the light, R, to a focus. However, due to imperfec-
tions inherent in such a high power lens, the focal point is not really a
"point,” but rather a '"zone." The micron pinhole is adjustable to allow
only the "cleanest" light in the focal zone to pass. Other small imperfec-
tions in the light, e.g. due to higher modes in the laser cavity, are also

11
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Figure 2 - The Apparatus Used in Making Holograms of

the Cantilever Beam
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removed by the spatial filter. Upon leaving the spatial filter, the light
is collimated by means of the lens, L1, and the collimated light is directed
by the mirror, M6, to strike the high resolution photograph plate, H. It
is vitally important that the total path lengths of beams 01, 02, and R
(measured from the beam splitter to the hologram) do not differ from each
other by an amount greater than the “coherence length" of the laser. If
this condition is not satisfied, the beams of light, 01 and 02, will not
interact properly with the reference beam, R, to produce interference
patterns at the photographic plate; in this case, no hologram will result.
For the 15 milliwatt helium-neon laser used in the experiments, the
"coherence length" was approximately 25 cm. (10 in.).

The optical equipment and the cantilever beam were placed on a large
(8,000 1bs.) granite table that was shock-isolated from the laboratory
surroundings. (The granite table is shown in Figure 3.)

The cantilever was excited to resonance by means of a piezoelectric
crystal transducer connected to a standard oscillator-amplifier set-up.
This driving transducer was cemented to the tip of the beam, and a similar
pick-up transducer was mounted near the root. The pick-up transducer was
connected to an oscilloscope which monitored the response of the beam. An
electronic counter was used to accurately determine the excitation frequency.
The transducers and some of the electronic equipment are shown in Figures
3 and 4.

The driving transducer was cylindrical in shape, approximately 5/16
of an inch in diameter and 3/8 of an inch long. It was made by cementing
two disc-shaped piezoelectric (ceramic) crystals together, and a thin metal
disc was then cemented to the top. This resulted in a "stack'" of wafers
or discs, as shown in Figure 5. The complete transducer weighed approxi-
mately 4 grams when assembled.

When a sinusoidal voltage was applied to the transducer, the ceramic
crystals would alternately expand and contract, causing the metal disc to
move back and forth along the axis of the transducer. A sinusoidal force
resulted (due to the inertia of the metal disc) which was transmitted to
the beam and used to excite it to resonance.
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Figure 4 - Close-up of Cantilever Beam and Electronics



METAL
DISC
PIEZOELECTRIC
DISCS
WIRE LEADS
INPUT
VOLTAGE

Figure 5 - Schematic of Piezoelectric Transducer
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Test Procedure. - The test procedure was simply to tune the oscillator
until a large, resonant response was indicated on the oscilloscope. Then
the resonant frequency was determined by the counter and recorded. Having
found a resonant mode of the beam, the next step was to make a time-average
hologram to record the nodal pattern and mode shape. Since the primary
purpose was to investigate transverse vibration modes (as opposed to tor-
sional modes) it was necessary to distinguish the type of resonant responmse.
It was readily determined form the oscilloscope that the transverse modes
exhibited the usual linear resonance peaks, whereas the torsional modes
possessed noticeable nonlinearities in their response. This distinction
made it possible to photograph only the desired transverse modes.

Initial attempts to make time-average holograms of the vibrating beam
were unsuccessful, due to the presence of undesirable responses of the
lower maodes of the beam. These low-frequency motions were excited by such
things as seismic disturbances and vehicular traffic which were sufficient
to move the beam more than one wavelength of the light employed to make
the holograms. This problem was overcome by designing a support with a
pointed metal stud which could be positioned at a node of the desired
mode. This support prevented the low frequency modes from being excited,
and successful holograms were made with it in place. A photograph obtained
from one such hologram is shown in Figure 6, which will be discussed shortly.

In addition to using the time-averaging technique to record the modes,
an attempt was made to employ live fringe interferometry to identify the
modes. First, a hologram was made of the unexcited beam. In this case,
the auxialiary support stud could not be employed, and consequently the
beam was stationary only in the immediate vicinity of the root. Then the
developed hologram was put back into the plate holder and the beam was
excited by the driving transducer. This arrangement produced live fringes
near the root of the beam, and the type of mode (torsional and transverse)
could be readily identified by direct visual observation. The live fringe
procedure was used to identify a mode at 99,395 cps, and then a time-
average hologram was made to record the complete mode shape. A photograph
made from this hologram will be discussed in a subsequent section.

Interpretation of the Fringe Patterns - Once the holograms have been
made, it is necessary to reconstruct the interference fringe pattern and
then to interpret it. Reconstructing the pattern is accomplished by
first developing the exposed photographic plate and then illuminating it
with the reference beam, R. Figure 6 shows a photograph of a reconstructed
image and fringe pattern. The object with the white vertical lines on it
is the cantilever beam vibrating in its 21st mode (10,121 cps). For com-
parison purposes, a 30 inch ruler is shown alongside the beam. The white
vertical stripes on the beam represent nodal positions; since they do not
move during the vibration, they are brightly exposed on the time-average
hologram. The black fringes between consecutive white stripes on Figure
6 can be related to the mode shape of the beam. The curvature of these
fringes is attributed to anticlastic behavior of the beam. Such curved
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Figure 6 - Photograph of the Image Obtained by Making a Hologram
of the Cantilever Beam Vibrating in its 21st Mode

81



fringe patterns have been observed previously in the static bending of
beams (Ref. 6). For purposes of analysis, the central axis of the beam
was used to determine the mode shapes.

The fringe patterns were interpreted by using the analysis presented
by Powell and Stetson (Ref. 9). Their results show that the amplitude
of vibration for points on the beam which are covered by a fringe can be
related to the roots of J_ , the zero-order Bessel function. That is, a
fringe is formed where °

Jo (Qi) =0 (3-1)
and Qi is defined by
Q. = 23'[cose + cos8,]A. (3-2)
i A 1 2771
where
A is the wavelength of light used to make the holograms

el is the angle between the displacement vector of the beam and
the line of sight of the observer through the hologram

62 is the angle between the displacement vector of the beam and
the illuminating light source

Ai is the amplitude of vibration (at fringe 1)

The angles 61 and 92

in the experiments, and A was 6328 Angstroms. At Ql, the first root of

are shown in Figure 7. A helium-neon laser was used

Jo’ we have

27
Ql = 2.405 = X [cosel + cosez] A1
or oA _ (4.75 x 10°° in.) (3-3)
1 2'rr(cosel + cosez) 1/2 (cose1 + cosez)

for the amplitude of vibration at the location of the first fringe.
Similarly, the vibration amplitude A2 corresponds to the second root,

Qz, etc. Near the center of the beam, the optical arrangement was such
that 91 = 62 = 0 and the amplitudes are especially easy to compute. The

first five fringe numbers and the corresponding vibration amplitudes A.n
are given in Table I.
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TABLE I

Amplitude Determination for
Time-Average Holograms

Vibration
Fringe Root, Amplitude
Number Qi (inches)
1 2.405 4.75 x 107°
2 5.520 10.9
3 8.654 17.1
4 11.79 23.3
5 14.93 29.5

An example of fringes near the center of the beam and their interpretation
is shown in Figure 8.

Referring to Figure 8, the first fringe (adjacent to a nodal line)
occurs at an amplitude of 4.75 x 10% inches. The next fringe is formed
where the amplitude of vibration is 10.9 x 10-6 inches, etc. As indicated
in Figure 8, the values in Table I relate to single amplitude of vibration,
not peak-to-peak displacement.

It should be noted that the vibration amplitude must be at least
4.75 x 10 inches for a fringe to form; this illustrates the lower limit
of sensitivity of the time-average holographic technique.

Experimental Results and Comparisons with Analysis - The experimental
results were in the form of time-average holograms which were recorded
at the resonant frequencies of the modes involved. Photographs made from
typical holograms are shown in Figure 9. Four very high-frequency modes
are shown in Figure 10. Appendix B contains additional beam vibration
modes and their associated frequencies.

Equations (3-1) and (3-2) were used to determine the shape of the
21st mode from the corresponding hologram. This experimentally determined
mode shape was compared with the results of a typical computer program
(Ref. 25) which employs Timoshenko Beam Theory; the comparison is illus-
trated in Figure 11l. Discrepancies near the tip are probably due to the
effect of the driving transducer.

Additional mode shapes and frequencies were calculated, and these re-

sults were compared with the corresponding experimental values. Such a
comparison on the basis of frequency versus mode number is shown in Figure
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(a) 5th mode, f = 500 cps

e
iR

(b) 15th mode, f = 5155 cps

(c) 24th mode, f = 13,148 cps

(d) 34th mode, f = 25,665 cps

Figure 9 - Transverse Vibration Modes (Cantilever Beam)

23



(b) Plate-type Mode, f = 100,315 cps

(¢) Torsional Mode, f = 72,846 cps
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H
ol )

(d) Transverse Mode, f = 99,395 cps

Figure 10 - High Frequency Beam Modes
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Figure 11 - Comparison of the Experimental and Cal cuTated Shape for
the 21st Mode (Cantilever Beam)



12. As illustrated therein, the calculated frequency (based upon
Timoshenko Beam Theory) compares very well with the experiments. The data
points plotted in Figure 12 are also given directly in Table II.

In order to find the limitations of the experimental technique,
holograms were made of the beam vibrating in selected modes up to the 77th,
which occurred at a frequency of 99,395 cps (see Figure 10). Other modes
between the 34th and 77th were identified and the corresponding frequencies
were noted. For these very high modes, the influence of boundary conditioms
becomes unimportant, and the frequencies can be calculated from the case of
a traveling wave in an infinitely long beam. Using Timoshenko Beam Theory
the resulting frequency equation is given by (Ref. 26):

4 2r 3 /4\ ~2
€ <C_> - (c_> ["‘2‘(X) + 1+ e]_+ 1=0 (3-4)
Co_ o L

B 1/2
where c, = (;) is the bar velocity

c is the phase velocity
A is the wavelength of the bending wave

d is the depth of the (rectangular) cross-section

_20 +v)

€ = R'

where v is Poisson's ratio and R' is 5/6 for a rectangular cross-section.

The wavelength A was determined from the holograms, and the frequency, f,
was measured directly by the electronic counter. By using the relation
¢ = fA, it was possible to plot (c/co) vs A/d from the experiments.

These experimental results were compared with the lowest root of equation
(3-4) as shown in Figure 13. The close agreement shown in Figure 13 again
demonstrates the validity of Timoshenko Beam Theory for the vibration
problem at hand. In interpreting Figure 13, note that the low-frequency
long~wavelength modes lie near the origin; as one moves out along the
curves, away from the origin, the frequencies increase and the wavelengths
become shorter.

Although the main objective was to record transverse modes, additional
modes were found in which the beam vibrated like a cantilevered plate.
Figures 10(a) and 10(b) show modes in which there are two nodal lines
parallel to the longitudinal axis of the beam. Several tramsverse nodal
lines are also shown in the photograph, and these modes are classified as
"cantilever plate modes.'" Figure 10(c) shows another related type of
vibration pattern, an antisymmetric mode (a torsional mode) with a nodal
line along the central axis of the beam. An additional torsional mode is
shown in Appendix B.
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Figure 12 - Natural Frequency as a Function of
Mode Number (Cantilever Beam)
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TABLE II

RESONANT FREQUENCIES (CANTILEVER BEAM)

MODE EXPERIMENTAL CALCULATED FREQUENCIES
NUMBER FREQUENCY (CPS) TIMOSHENKO BERNOULLI - EULER
1 9 9.06 9.06
2 56.77 56.8
3 158.8 159.0
4 310.9 311.7
5 500 513.2 515.3
6 746 765.2 770.0
7 1044 1066.5 1075.8
8 1385 1416.4 1431.3
9 1777 1814.1 1838.5
10 2214 2259 2297
11 2698 2750 2805
12 3262 3287 3365
13 3843 3868 3976
14 4477 4492 4638
15 5155 5158 5350
16 5870 5866 6113
17 6640 6613 6928
18 7454 7399 7793
19 8308 8223 8709
20 9204 9084 9676
21 10,121 9979 10,693
22 11,106 10,908 11,762
23 12,111 11,870 12,882
24 13,148 12,864 14,052
25 14,200 13,947 15,274
26 15,365 15,364 16,546
27 16,401 16,158% 17,869
28 17,550 17,350% 19,243
29 19,085 18,700% 20,668
30 20,336 19,800% 22,144

These values were obtained from the frequency equation for the

Timoshenko Beam.
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In addition to identifying high-frequency transverse, torsional, and
cantilever plate modes, it was desired to measure the damping value asso-
ciated with a high-frequency mode. _For this purpose, the 21lst mode was
excited to resonance and then the excitation was abruptly terminated.

The exponential decay of the vibration was monitored by the pickup trans-
ducer; a very clean decay trace resulted, which gave a logarithmic decre-

ment value § = 1.59 x 10—2. The associated frequency was 10,121 cps, and

no indication of "beating' or excitation of adjacent modes was evident.

Plate Vibration Modal Survey

Experimental Set—up. — The plate which was tested was made from 1/16"
thick aluminum sheet (6061-T6). The sheet was clamped in a rectangular
frame, leaving an 8" x 10" panel in the center which was free to vibrate.
Figure 14 shows a photograph of the plate and its clamping frame. Narrow
vee grooves were cut at the boundaries of the panel to a depth of 0.024
in. This procedure was used to make the plate boundary conditions approach
the case of simple supports. (Details of the plate supports are shown in
Figure 15.) The plate was subjected to a liquid honing process in order
to provide a diffuse optical surface.

A schematic of the apparatus used to make the holograms is shown in
Figure 16. Light from the helium-neon, continuous-wave laser was directed
through a spatial filter which expanded the beam sufficiently to simul-
taneously illuminate a reference mirror and the vibrating plate. Light
reflecting from the mirror and the plate exposed the hologram as shown in
Figure 16. After the photographic plate (the hologram) was developed, it
was accurately repositioned in its holding fixtures, thereby making the
system ready to be used for stored beam interferometry. Ideally, one
would like to reposition the photographic plate to within a fraction of a
wavelength of light. One way to accomplish this end is to develop the
hologram in place, without moving it. (Special plate holders are commer-
cially available for this purpose.) The method used herein was to remove
the photographic plate, develop it, and put it back in the plate holder.
The plate holder used for this purpose is shown in Figure 17. Such plate -
holders are commercially available or can be made by most well-equipped
machine shops.

Time-average holograms were subsequently made with the same apparatus.
In all cases, the relative intensities of the object beam and the reference
beam were approximately in the ratio of 1:1, and high resolution specto-
graphic plates were used to make the holograms. The optical equipment
and the plate specimen were placed on a massive (8,000 1b.) granite
table which was shock-isolated from the laboratory surroundings.

The plate was excited to resonance by means of a piezoelectric
crystal transducer (see Figure 5) which was connected to a standard oscil-
latory-amplifier arrangement. The crystal transducer was cemented to the
rear surface of the plate. An electronic counter was used to accurately
determine the frequency of the signal used to drive the transducer.
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Test Procedure. —~ First a stored beam hologram of the aluminum plate
specimen was made and set up. Then the oscillator was slowly tuned until
a stationary distinct fringe pattern became visible from the hologram. A
time-averaged hologram of the plate was then made and the process continued.

The fringe patterns shown in Figure 18 are from time-average holograms
of the vibrating plate. Other typical fringe patterns are shown in Figures
19 and 20. These patterns are very similar to the results observed (in
real time) by using stored-beam holography. A photograph made using a
stored-beam hologram is shown in Figure 21. The fringe patterns readily
allowed the mode numbers of the resonant vibration to be determined, and
the corresponding resonant frequency was read from the counter. This pro-
cedure allowed rapid identification of the vibration modes, and over 110
modes were found in less than two weeks time. A 35 mm camera was positioned
behind the stored-beam hologram to photograph the fringe patterns and there-
by record them permanently. A few modes were recorded in this fashiom,
but the results were not as sharp and clear as was desired. (Compare for
example, Figure 21 and Figure 18.) Accordingly, the remaining modes were
recorded using time-—average holography.

The modes were obtained with the driving transducer mounted in three
different locations, including the geometric center of the plate and the
center of the northwest quadrant of the plate. The transducer location
can be seen in Figure 19, which shows the resulting distortion of the
fringe pattern in the center of the plate.

Experimental Results and Comparisons with Analysis. - The results
obtained were resonant frequencies and mode shapes for various mode
numbers. For a simply-supported plate, classical plate theory gives

¢ (x,y) = sin Ezl sin i{)‘l (3-5)
(m=1,2,3, «0e0s.
n=1,2,3, .....)

as the shape of the m - n th vibration mode; here x and y are coordinates
parallel to the sides of the plate, and (a,b) are the lengths of the
sides. The corresponding resonant frequency is given by

1/2 2 2
_ 1 (D T T,

3
where D = Eh—*~——§ is the plate bending stiffness
12(1- v7)

h is the plate thickness

and
) is the density of the plate material.
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Table III gives experimental and calculated values of the frequency
fmn as a function of the mode numbers m and n. The calculations used the
nominal values E = 10 x 10° 1b/in?, pg = 0.1 1b/in>, a = 8 in., b = 10
in., and h = 1/16 in. A study of the tabulated values indicates that
theory and experiment are within 2 - 37 of one another for all but the
very low and very high modes. The low modes were influenced by the elastic
moment restraints at the boundaries, which were not quite simply-supported.
As the mode numbers increase, the effect of the boundary conditions becomes
less and less and the experimental frequencies approach the calculations
quite closely. Finally, at the very high mode numbers, the effects of
rotary inertia and shear become important, and classical plate theory de-
viates from the experiments.

The results given in Table III are also shown graphically in Figure
22, which illustrates the general agreement just discussed. The figure
does not include four very high modes found above 20 kec. In order to
improve the calculated results for these three high modes, Mindlin's
plate theory (Ref. 27) was used. 1In terms of the transverse displacement,
w, the equation of motion from Ref. 27 is

<V2 - é%-—§§> (sz - 9%;——§§> w + ph EEg =0 (3-7)
ot at at

where V% is the Laplacian operator,

p 1is the plate density

h 1is the plate thickness

D is the plate bending stiffness

t denotes time
and G' = KZG where G is the shear modulus and Kz is a factor to account
for shear effects (see Ref. 27).
Using the vibration shape

w (x,y,t) = Amn sinox sinfy cosyt,a = %F; B = %?' (3-8)

in equation (3-7), the result is
2 2 2 2 2 gh3 pD] 2 2 Qh3 p\ 4
Dia™ + 8 ~{a” + B 12 + el Gl phw + e = 0

40



TABLE IO

PLATE RESONANT FREQENCIES

VALUES ARE GIVEN AS EXPERIMENTAL/THEORETICAL, WHERE CLASSICAL PLATE THEORY WAS USED

n
m 1 2 3 4 5 6 7 8
1 | 162151 357/328 665/623 1071/1036 3058/2984
2 | 425/428 1360/1313 1895/1844 2546/2494 3308/ 3261 419874146
3 | 950/889 1135/1066 142171361 1831/1774 2368/2305 3015/2955 3780/3722 4657/4608
4 1790/1712 2074/2006 2481/2420 3668/3600 4421/4368 5306/5253
5 | 2465/2364 2625/2541 2915/2837 3321/3250 3845/3781 4489/4431 5256/5198 6120/6083
6 | 3467/3379 3948/3851 4333/4264 4868/4796
7 | 4682/4578 5132/5050 6019/5995 6712/6644 7470/7411 8353/8297
8 6931/6846 8839/ 8795
9 | 7647/7529 8487/8415 9026/8946 | 962879595 10414710362 | 11295/11248
10 10732/10698 | 11392/11347 | 12127/12115
11 12670/12635 14053/14051
12 15360/15405
13 16099/16117 17048/17062 | 17602/17711 18362/18478
14 2004 8/20201
n
m 9 10 11 13 14 15 17 18
1 | 4949/4873 7329/7234 10103710067 17065/17150 | 19082/19216
2 1 5194/5150 12001/11938 | 13647/13649 | 17363/17427
3 | 5648/5611 10886/10805 | 12428/12399 | 14130/14111 17787/17888 | 19788/19954
4 8669/8618
5 | 7147/7087 8255/8208 9493/9448 13863/13874 | 15558/15586 | 19181/19363
6 10496/10462 | 13238/13295 | 14789/14889 [ 16502/16601
7 | 9353/9300 11676/11661 | 14464/14494 | 16005/16088 | 17676/17800
8
9 14566/14612 | 17327/17445 | 18788/19039 | 20524/20751
10 | 13969/14004 | 15080/15125 | 16276/16364 | 18997/19198
11 | 15871715940 | 16932/17062 | 18158/18301 | 20892/21134
12
13 | 20164/40367
n
m 21 25 3
17 | 50104/52683 | 50682/63543 | 76768/83376
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for the frequency equation. Now let

el @y 4 an’ o 2n’ (3-9)
a b A
be used to define a waveiength, A, and let w = (%EDC define a wave speed,

c. Then equation (3~8) can be put in the form

SO | -

where c¢ 2 = —E and c¢ 2 =

p(l—vz) s

ratio, and it was determined by using expressions given in (Ref. 27).

. The factor Kz is a function of Poisson's

O |®

Values of v = 0.3 and K2 = 0.86 were used in equation (3-10), and the
smallest root (c/cs) was determined as a function of (h/A). This procedure
resulted in a calculated curve of nondimensional wave speed as a function

of (plate thickness/bending wavelength).

Experimental wvalues for (c/cs) and h/A were obtained using the m and
n numbers of the various modes and their corresponding frequencies. 1In
particular, the experimental wavelength was determined from equation (3-9),
using a = 8" and b = 10". Similarly, the wave speed was calculated from

c = fA, where £ is the experimental frequency and A came from equation

(3-9). The experimental data was nondimensionalized using cg =(G/p)1/2

1.219 x 105 in/sec. A comparison of the theoretical and experimental

values of wave speed as a function of wave length is shown in Figure 23.

All the results plotted in Figure 22 as a one-parameter family of
curves can be reduced to the single curve of Figure 23. The straight
line in Figure 23 was obtained using classical plate theory, which neglects
rotatory inertia and shear effects. The curved line shows Mindlin's
plate theory, which includes these effects. The three experimental points
at the largest values of h/A were obtained from the three very high fre-
quency modes discussed previously. The other points shown in Figure 23
are representative examples of other modes ranging in frequency from 162
to 20,892 cps. Figure 23 demonstrates that classical plate theory agrees
with the experiments for values of (h/A) less than 0.06. Beyond that
point, the experiments agree more closely with Mindlin's plate theory.

The modal numbers m and n were easily determined by viewing the
interference fringe patterns. Typical fringe patterns obtained from time
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average holograms are shown in Figures 18 through 20. These photographs
are very similar to the interference fringe patterns observed visually
in real-time by using stored beam holography. The nodal lines show up
quite clearly as white areas on the photographs (see Figures 18(d) and
19(a), for example.) Between the nodal lines, the interference fringes
form closed “contour lines" encircling each antinode of the vibration
shape.

The shape of a vibration mode was determined as follows: First,
equations (3-1) and (3-2) were used to find the vibration amplitude corres-
ponding to a particular fringe. Then, by placing a ruler on the photo-
graph and measuring the position of the fringe, it was possible to plot
the vibration amplitude at the measured location. This procedure was used
to determine several typical mode shapes; examples are shown in Figures 24,
25 and 26, which correspond to photographs 18(a), 18(c), and 18(d),
respectively. In cases vwhere the fringes were close together, such as
Figure 18(d), a traveling microscope was used to determine the fringe
location. As shown in Figures 24 - 26, the experimental mode shape data
agreed quite well with the theoretical shape given by equation (3-5).

For the first mode, (Figure 18, m = 1, n = 1), slight deviations from the
theoretical mode shape were noted near the boundaries of the plate. These
deviations were attributed to the slight elastic moment restraint at the
boundaries.

Mode shapes could be determined most easily for the lower modes, in
which several concentric fringes enclosed each antinode. The very high
modes usually had only a single fringe around each antinode, and conse-
quently the corresponding mode shapes could not be closely resolved.
Nevertheless, it is clear from Figures 19 and 20 that the experimental
modes possessed the basic "checker-board" character given by equation
(3-5). It is also apparent from Figure 27 that the mode shapes were not
always perfectly clean and undistorted. Distorted mode shapes, or
"compound modes" (such as those shown in Figure 27) were attributed to
coupling between two or more modes of nearly equal frequencies. Such
distortion due to modal coupling occurred throughout the frequency spec-
trum. A discussion of measuring compound modes using holographic inter-
ferometry was recently presented in Ref. (28).

Additional photographs showing other plate vibration modes are given
in Appendix C,
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4,0 TRANSIENT RESPONSE TEST

Background and Summary

This test was run to prove the feasibility of using holography to
obtain transient response data. A stored-beam hologram of a 20" canti-
lever beam was set up, and the beam was subjected to a transverse impact
impact at the tip. A high-speed motion picture camera recorded the fringe
motion, and the movie film was analyzed frame-by-frame to provide
displacement-time histories of various points on the beam. A description
of the experimental set-up, test procedure, and data reduction process is
given in the sections which follow. This portion of the report concludes
with a comparison of analytical and experimental results for the response
of a cantilever beam to a transverse impact at the tip. The results
showed generally good agreement between theory and experiment.

Experimental Set-Up

The cantilever beam used was 20 inches long and made of aluminum
(6061-T6). It had a rectangular cross-section, one inch wide by 1/4 inch
deep, and it was clamped at the root with a massive steel support block.
The beam had a fundamental flexural mode frequency of 19.8 cps. Initially,
attempts were made to use a longer beam (with a lower fundamental fre-
quency) but disturbances from background noise prevented the successful
production of good quality stored-beam holograms when the longer canti-
levers were used. 1In order to comserve the light from the laser and
properly expose the movie film, the surface of the beam was polished to
make it highly reflective. A more powerful laser might have allowed use
of an unpolished surface.

The experimental arrangement used for the transient test is shown
schematically in Figure 28. Figure 29 shows a photograph of the actual
set—up for the transient test. Referring to Figure 28, light from the
laser is pased through a spatial filter (SF) and then through a converging
lens (L). The light is brought to a focus just ahead of a mirror, M;
when the light leaves the mirror it expands and is then passed through a
collimating lens, CL. Part of the light leaving the collimating lens
strikes the beam splitter at point A. Light is reflected from point A on
the beam splitter to a two-inch wide mirror Ml; it then is reflected to
point B on the cantilever beam. Since the beam has a highly polished
surface, it reflects the light back along its original path, i.e., back
to M1 and then to A. Upon reaching point A, the light passes through the
beam splitter and reaches the hologram at point H. This constitutes the
object beam for the hologram.

At the same time, part of the light from the collimating lens passed
through the beam splitter at point A. This light is sent to a mirror at
M1', which reflects it back to the beam splitter again. It is then re-
flected from the beam splitter to point H on the hologram; this constitutes
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the reference beam for the hologram. In order for successful holograms
to be made, the path length of the object beam (A - Ml - B - M1 - A - H)
must be the same as the reference beam (A - M1' = A - H). In order to
satisfy this requirement, the distance A -~ MLl' was adjusted to be within
one inch of the length A - M1 - B.

The light paths just discussed were sufficient to illuminate a region
nearly two inches long at the tip of the cantilever. Similar arrangements
were made using mirrors (M2, M2') (M3, M3') and (M4, M4")to illuminate one
inch long regions of the beam at the respective distances of 16, 12, and
10 inches from the root. Stored-beam holograms which showed these four
illuminated regions of the cantilever were made with this optical arrange-—
ment. The laser output was insufficient to have used a single large
mirror giving a continuous view of the entire beam.

To excite the tramsient motion, a ballistic pendulum was used to
impart an impulse to the beam. A small (0.016 gram) steel ball was sus-
pended on a 10-inch human hair to make up the ballistic pendulum. The
initial height of the ball was measured using a machinist's scale. A
latch mechanism was used to release the ball without giving it an initial
velocity. The pendulum ball struck a piezoelectric crystal which was
mounted on the beam at one-half an inch from the tip. By monitoring the
output of the transducer with an oscilloscope, the force-time history of
the impulse was determined. The oscilloscope trace showed a half-sine
pulse with a duration of 5 us. The height to which the pendulum rebounded
(after striking the beam) was recorded using a Polaroid camera which had
the shutter held open. The rebound height was determined from a scale
which was photographed in the background behind the pendulum.

Test Procedure

A small metal support stud was used to apply a slight transverse pre-—
load at the tip of the beam. With this support stud in place, a stored
beam hologram was made of the four illuminated spots on the cantilever.
The hologram was bleached. (i.e., silver halides contained in the emulsion
were made transparant by a chemical process) and then replaced in the
photographic plate holder. The bleaching process increased the amount
of light transmitted through the hologram. Then the metal support stud
was removed, and the beam returned to.its unloaded equilibrium position.
This slight displacement of the beam caused zero-order interference fringes
to appear when the hologram was viewed. Figure 30 is a sketch of the
zero—order fringes and the four illuminated segments of the beam. Small
marks were made on the surface of the beam at intervals of 0.2 inch, and
these marks are illustrated in Figure 30.

With the hologram in position, the high-speed motion picture camera
was aligned and focused to record the interference fringes. The test was
conducted by first turning on the camera and letting it run for about 1
second to come up to speed. (The camera was set for a nominal speed of
4000 frames/sec.) Then the ballistic pendulum was released and allowed
to impact the beam. The motion picture camera recorded the fringe motion

53



/

/ INTERFERENCE FRINGES

AR

-




from the initiation of impact until the 400 foot reel of film was ex-
hausted. The Polarold camera recorded the rebound of the pendulum. The
entire test took less than 5 seconds to complete, once the experiment
had been set up.

Two or three preliminary tests were made to determine the correct f -
stop setting for the high-speed camera, so that the film was exposed °
properly. Once these preliminary tests were completed and the film devel-
oped, the final test was made. After the final film was developed, it
was then necessary to reduce the data. The process of obtaining displace-
ment-time histories from the movie film is discussed in the next section.

Reduction of the Film Data

Figure 31 shows photographs of five individual frames from the high-
speed movie results. The illuminated spot at 10" from the root of the
cantilever is in the left of the scene, and the two inch illuminated
segment from 18"-20" appears on the right; the other two illuminated seg-
ments are in the middle of the scene. Frame zero in Figure 31 corresponds
with the zero order fringes sketched in Figure 30. The dots on the beam
which were spaced 0.2 inch apart are partly visible in Figure 31; the
broad fringes would sometimes cover the dots and make them hard to see.
The fact that the fringes are slanted in Figures 30 and 31 is thought to
be due to either slight twisting of the beam when the support stud was
used or inaccurate repositioning of the stored-beam hologram.

To understand how the data was. obtained from the movie film, comsider
Figure 32, which shows how the fringes formed near the tip of the moving
cantilever beam. Figure 32 is exaggerated drawing which shows the rela-
tionship between the interference fringes and the moving cantilever beam.
The horizontal parallel lines labeled "fringe 0, fringe 1, etc.'" in Figure
32 are reference lines which control the location of the interference
fringes. These parallel lines have a spacing of A/2 = 12.45 x 1076 inches
apart, since the displacement between adjacent fringes is A/2. The verti-
cal parallel lines in Figure 32 have a spacing of 0.2 inches and refer
to the equally spaced dots on the beam located at 18.0, 18.2, ... inches
from the root of the cantilever. The heavy dashed diagonal lines in
Figure 32 illustrate the position of the cantilever at times which corres-
pond to frames 0, 1, and 2 of the movie film. The field of view of the
movie camera is shown in Figure 32 (for the illuminated region at the tip
of the beam).

Let x denote the distance measured from the root of the cantilever
beam. By viewing Frame 0 of the movie film (Figure 31) and referring to
the marks on the beam, it was noted that the fringe on the right was lo-
cated at x = 19.2 and the adjacent fringe (to the left) was located at
x = 18.35. (These fringe locations correspond to points A and B, respec-
tively, in Figure 32). When the pendulum struck the beam, the tip moved
toward the camera, and the fringes in the movie film (at the tip of the
beam) moved toward the right. TFrame 1 (Figure 31) showed that the right
fringe had moved to x = 19.4 and its adjacent partner moved to x = 18.5.
(These fringe locations correspond to points A' and B' in Figure 32.)
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tionship between the interference fringes and the moving cantilever beam.
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32 are reference lines which control the location of the interference
fringes. These parallel lines have a spacing of A/2 = 12.45 x 1076 inches
apart, since the displacement between adjacent fringes is A/2. The verti-
cal parallel lines in Figure 32 have a spacing of 0.2 inches and refer
to the equally spaced dots on the beam located at 18.0, 18.2, ... inches
from the root of the cantilever. The heavy dashed diagonal lines in
Figure 32 illustrate the position of the cantilever at times which corres-
pond to frames 0, 1, and 2 of the movie film. The field of view of the
movie camera is shown in Figure 32 (for the illuminated region at the tip
of the beam).

Let x denote the distance measured from the root of the cantilever
beam. By viewing Frame 0 of the movie film (Figure 31) and referring to
the marks on the beam, it was noted that the fringe on the right was lo-
cated at x = 19.2 and the adjacent fringe (to the left) was located at
x = 18.35. (These fringe locations correspond to points A and B, respec-
tively, in Figure 32). When the pendulum struck the beam, the tip moved
toward the camera, and the fringes in the movie film (at the tip of the
beam) moved toward the right. TFrame 1 (Figure 31) showed that the right
fringe had moved to x = 19.4 and its adjacent partmer moved to x = 18.5.
(These fringe locations correspond to points A' and B' in Figure 32.)
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By neglecting the curvature of the beam and assuming that it was
straight between two adjacent fringes, it was possible to obtain the dis-
placement of the beam (in the tip region) by interpolation. The inter-
polation scheme can be understood by referring to Figure 33. TFirst of all,
the location x = 19.0 was chosen as the point where the deflection-time
history would be computed. It was thus necessary to determine the
"initial offset" at x = 19.0, represented by d0 in Figure 33.

The computation of dO was accomplished by using similar triangles; thus,

taking the ratios of corresponding sides (from Figure 33) we have

=1

_o _ 19.2 - 19.0 _

BC AC (4-1)
where BC and AC designate the sides of triangle ABC. However, the length
AC = 19.2 - 18.35 = 0.85 in., and BC = %-= 12.45 x 10_6 in. Substituting

these results into equation (4-1) yiélds

d, = (;%gﬁ(lz.as x 1070 = 2.93 x 107 in. (4-2)

for the initial offset.

. For Frame 1, a similar interpolation scheme was used to compute d + do’

where d is the deflection at x = 19.0. Referring again to similar tri-
angles in Figure 33, we have

@+d)  (19.4-19.0) _ .4
(A/2) ~ (19.4 - 18.5) .9

(4-3)

5.59 x 10_6 in., and the deflection d can

Equation (4-3) gives (d + do)
found by subtracting the initial offset, do' Thus, for the first frame,

we have

(5.59 - 2.93) x 107° in.

[aW
I

(4-4)
- 2.66 x 1070 in.

(=9
|

at the location x = 19.0. This interpolation procedure was continued for
the first 714 movie frames following the initiation ‘of impact. It was
necessary to designate consecutive fringes by number, as indicated in
Figure 31, since the fringes would move in and out of the scene as the
beam moved back and forth.
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Additional calculations of a very straight-forward mnature were
necessary to determine the times corresponding to the individual movie
frames. The frame just prior to impact was called "Frame 0" and was used
to locate time t = 0. Timing marks were put on the edge of the film by
a timing light in the high-speed camera. By counting the number of frames
between timing marks and interpolating for intermediate frames, the time
corresponding to each frame could be easily determined. The timing light
had a nominal frequency of 1000 cps, and a ‘time increment of 0.001 sec.
was used in the initial data reduction. The frequency of the timing light
was subsequently checked using a photocell and an electronic counter; this
test gave a measured frequency of 1035 cps, which was then used in the
final data reduction. Results of the film data are described in the next
section.

Experimental Displacement - Time
Histories and Comparison with Analysis

The data reduction procedure just outlined provided a detailed plot
of the displacement-time history at the location x = 19.0 inches. The
experimental results were compared with calculations of the transient
response based upon elementary beam theory. These results are shown in
Figure 34, which has three parts, (a), (b), and (¢). In Figure 34, the
vertical scale is in units of inches/lb-sec., i.e., the deflection has
been normalized using the impulse of the applied loading. This normali-
zation procedure was used to allow analysis and experiment to be directly
compared; the impulse used to normalize the experimental data was

2.47 x 10_6 1b-sec., which was measured with the ballistic pendulum.

As Figure 34 shows, generally good agreement was obtained between the
experimental data points and the calculated curves. The calculations were
doen using the first ten modes of 20" cantilever, which were computed from
Bernoulli-Euler beam theory. The theory used an idealized Dirac-delta
function impulse, whereas the actual impulse had a time duration of approx-
imately 5 micro-seconds. Slight errors in measuring the experimental
impulse or in reading the film frames may account for the small discrepan-
cies between theory and experiment shown in Figure 34.

Thus far, only the response at x = 19 inch (near the tip of the beam)
has been discussed. An attempt was made to reduce the film data for the
locations x = 10, 12, and 16 inches, but it was only partly successful.

At these other locations, the illuminated portions of the beam were so
short that only one fringe was visible at any one time. Since at least

two fringes are required for the interpolation scheme to work, it was
impossible to obtain data from each frame. Some data were provided each
time a fringe fell directly upon the same position it had occupied at time

t = 0; then it was known that the beam had moved an integral number of half-
wavelengths (A/2). By noting when the fringes changed direction in their
motion (from right to left, etc.) it was possible to tell when a peak or

a valley occurred in the response. Data obtained in this fashion are

shown in Figure 35 for the x = 12 inch location. The experimental data
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points are scattered sporadically about the calculated curve, and qualita-

tive agreement is seen. Because of the widely spaced data points, however,
no detailed comparison of analysis and experiment was possible for the beam
locations x = 10, 12, and 16 (inches).

This unfortunate development clearly points out that in future experi-
ments of this type, the experimenter should capture two or more adjacent
fringes and thereby have the ability to interpolate in obtaining displace-
ment data.

Discussion of the Experimental Technique

The experimental method just presented has the advantage that no
sensor or transducer need be attached to the structure. In addition, data
can be recorded on movie film for a fairly large area of the structure and
after the test it is possible to reduce the data at the points of greatest
interest. This feature is in contrast with most currently available
measurement techniques, which provide data at a point rather tham over an
area.

One characterization of conventional instrumentation is its “frequency
response capability." By examining Figure 34, one can see that the present
method will record motions of up to 500 cps. However, the recording capa-
bility depends on the amplitude of the motion, as well as its frequency.

If the amplitude of the motion becomes too large, the back-and-forth mo-
tion of the interference fringes will occur too rapidly for the camera to
record. An obvious solution is to use a higher speed camera, but them the
duration of the data recorded will then be reduced. For a given camera
speed, it seems possible to obtain a calibration curve of frequency vs.
amplitude and establish a '"capability envelope' for the system. Such a
result would require several tests and was not attempted in this study.

Regarding the sensitivity of the technique, it should be mentioned
that incremental displacements (from one frame to the next) on the order

of 2 x 10—6 inches were readily determined. (See Equation 4-4, for example).
Thus the method will record motions as small as 1/10th of a wavelength of
the laser light. The resolution is limited only by ones' ability to detect
lateral motion of the fringes in going from one frame to the next.

Lest the reader be misled, it should be noted that other recent
investigators have made motion pictures of transient events using stored-
beam interferometry. To the best of our knowledge however, they have not
been successful in obtaining quantitative data from the movie film.

It should also be remarked that other methods of data reduction might
have been used to obtain the displacement-time histories. The problem of
finding the deflection (w) as a function of location (x) and time (t) can
be regarded as the task of defining a surface in a three-dimensional
W-x - t space. The movie film data provides the experimenter with
discrete values of the function (w) at specific points X, and ti. The
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points X correspond to locations of the fringes on the beam and the times
ti refer to the individual time of each movie frame. Using a two-

dimensional interpolation routine (with a computer, say) one can fit a
function (w) to the data points. Then by taking a "cut" through this
surface at some x value, one would obtain the desired displacement-time
history. This involved data-reduction process was not used herein,
although it might provide more accurate data than the simple interpolation
scheme which was used.

A distinct disadvantage of these methods is that each movie frame
must be individually viewed and interpreted. It may be possible to auto-
mate this time-consuming process, and one such proposal is discussed in
Section 6.
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5.0 WAVE PROPAGATION STUDY

Summary

The objective of the wave propagation study was to demonstrate the
use of holographic interferometry to measure transverse wave propagation
in beams. Pulsed laser holography was used to record the bending wave
created in a long beam by striking it in the center with a ballistic
pendulum. Interferograms of the bending wave were obtained from three
experiments, each one showing the deflected shape of the beam at a
different time after impact. From the interferograms, plots of the trans-
verse displacement vs. distance along the beam were obtained. The experi-
mental data compared favorably with amalytical results for the problem.

A new experimental technique, called differential interferometry, was used
to show how large amplitude motion can be recorded. Details of the
experiment and the analysis are given in the sections which follow.

Experimental Set-Up

An aluminum beam (6061-T6) with a cross section one inch wide and
1/4 inch thick was used as the test specimen. The beam was clamped in a
vise at each end, with a distance of 6 feet between supports. A liquid
honing process was applied to the specimen to provide a diffuse optical
surface well-suited for holography.

The optical arrangement used to make the holograms is shown sche-
matically in Figure 36. Figure 37 is a photograph of the actual set-up.
Referring to Figure 36, light is passed from the pulsed laser through
a negative lens and thence to the front surface of the specimen. This
light reflects from the specimen and forms the object beam for the holo-
gram. Some of the light reflects from the first surface of the negative
lens and is directed by mirrors to serve as the reference beam for the
hologram. A continuous wave laser was used to align the lens and mirror
arrangement and thereby insure uniform illumination of the specimen and
the hologram. As things turned out, the arrangement of the optics was
fairly straightforward and readily accomplished. A more difficult pro-
blem was to time the pulse of the laser to occur at a particular time
delay after initiation of the wave. The details of the timing arrange-
ment are discussed in the sections which follow.

The timing of the laser was accomplished electronically; in order
to understand the electronics used, it is first desirable to discuss the
characteristics of the pulsed ruby laser.

The basic components of the ruby laser which was used in this experi-
ment are two mirrors, a ruby rod, a flash lamp, and a Pockels cell,
arranged as shown in Figure 38. Referring to Figure 38, the two mirrors
M1 and MZ serve to form the optical cavity. The ruby rod provides the

optical energy (light) in a coherent, monochromatic form. The flash lamp
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“pumps" the ruby rod, making it ready to lase., The Pockels cell acts as
a shutter for the laser. When the proper voltage is applied to the Pockels
cell, light is allowed to pass and the laser is permitted to lase. When

there is no voltage, the Pockels Cell isolates the mirror Mé from Ml and

the optical cavity is no longer complete.

Precise timing is required for successful operation of the laser. The
voltage must be applied to the Pockels cell from 800 to 900 usecs after
the "pumping" of the ruby rod by the flashlamp. This requirement occurs
because the flashlamp stays on for just 1000 usecs and the ruby rod is
sufficiently excited after 800 usecs. After 900 pysecs the flashlamp begins
to lose its intensity and consequently the rod loses its energy.

In summary, then, the laser requires that (1) the flashlamp be flashed
about 800 usecs before lasing, and (2) the Pockels cell must be activated
800 - 900 psecs after flashing the flashlamp.

Timing Sequence for a Test

In performing the wave propagation experiment, electronic components
were arranged to provide two electrical pulses — one to activate the
flashlamp and the second to trigger the Pockels cell. A schematic of the
electrical arrangement is shown in Figure 39. Referring to Figure 39,
the sequence of events was as. follows:

(1) The pendulum is released from its holder and starts on
its way to impact the specimen.

(2) The ball of the pendulum interrupts the light from the
CW laser. This breaking of the light beam causes a
signal to be generated by the photocell. The signal
enters the time delay circuit of oscilloscope 01 and,
after a suitable time delay, the oscilloscope outputs
a signal to flash the flashlamp.

(3) The pendulum continues to travel until it makes contact
with the specimen. The impact causes a transverse wave
to propagate away from the center of the beam. When
the pendulum contacts the beam, it also completes an
electrical circuit (pendulum, oscilloscope, battery
pack, and beam). Closing this loop inputs a signal
to the time-delay circuit of oscilloscope 02. After
an appropriate time delay, A, the oscilloscope 02
generates a voltage which triggers the Pockels cell
and allows the laser to lase.

The time delay used in Step 2 was chosen by carefully determining
the travel time of the pendulum between points A and B (Figure 39). This
travel time was found to be 8 millisec. Since 800 usec was required by
the flashlamp, the time delay for oscilloscope 01 was set at about 7.2
millisec.
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The time delay, A, used in Step 3 was adjusted by the experimenter
to allow the bending wave to travel various distances from the center of
the beam before being photographed. The values used for A were 12.5, 25,
and 50 usec.

The test procedure was to first pulse the laser and make a hologram
of the stationary beam, then release the pendulum and initiate the timing
sequence to again expose the hologram when the bending wave was in the
beam. This double exposure technique produced interferograms which were
later reconstructed by a CW laser and then photographed. The resulting
photos are discussed in the next section.

Experimental Results

.Two sets of tests were made, using two different size pendulums.
Results from the first tests (7/8 inch diameter pendulum ball) are shown
in Figures 40 to 42. Figure 40 shows the central portion of the beam
12.5 usec after impact (just opposite the point of impact); a ruler is
shown in the lower half of the photo. The fringes in Figure 40 show that
the beam "bulges out” in a nearly axisymmetric fashion in response to the
impact. The leading fringe indicates that the front of the wave is about
1 inch ftrom the center of the beam, but ahead of that, there may be a
small amplitude precursor which has not caused any fringes.

Figure 41 is the result of a second test, which shows the wave 25
usecs after impact., By this time the motion has started to change char-
acter from a two-dimensional surface (the bulging out) to a one-dimensional
nature with the waves moving primarily to the right and left. The results
of the third test are shown in Figure 42, which shows the bending wave
50 usecs after impact. Figure 42 also contains a qualitative plot of the
lateral deflection, y, vs. x, the distance along the beam.

Each fringe in Figure 40 to 42 is separated by a normal displacement
of one-half a wavelength of the laser light, A/2 = 13.65 x 10-6 in. Due
to anticlastic behavior, the surface of the bent beam is doubly-curved;
this curvature of the beam surface causes the interference fringes to be
curved also. By comparison with the holograms made of beams in static
bending (e.g., Refs. 3 and 9) it was evident that a hyperbola in the
fringe pattern represents a relative maximum or a minimum in the displace-
ment vs. X curve. Between one hyperbola and the next (adjacent) omne, an
inflection point occurs, which shows up as an interference fringe going
straight across the beam. By counting the fringes (moving inward from
the end of the beam) and noting where the hyperbolas occurred along the
beam, it was possible to plot the lateral deflection, y, vs. position
along the beam, x. Curves of this type are shown in Figure 43, which
came from Figures 40-42 and show the deflection for the right half of the
beam. Each data point on the curve labeled A = 50 psec corresponds to a
particular fringe in Figure 42; the x -~ location of the data point corres-
ponds to the x - location of the fringe. Similarly, Figure 40 corresponds
to the curve A = 12.5 usec, and Figure 41 relates to A = 25 usec. The
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deflection pattern is nearly symmetrical with respect to the center of the
beam. These experimental results are very similar to the calculated re-
sponse of the beam which will be discussed shortly. ’

The first series of tests used a 7/8 inch diameter steel pendulum ball, and
the duration of the impulse was measured electronically to be 100 usecs.
An oscilloscope measured the time the ball was in contact with the beam.
The initial height of the pendulum was known, and the distance the ball
rebounded after impact was measured. Using this data and the mass of the
ball, it was possible to calculate the impulse applied to the beam. The
impulse was not exactly the same in all tests, but a representative value

was I0 = 8.03 x 10_31b—sec. A second series of tests were run using a
smaller diameter ball (1/4") to shorten the duration of impact. In this

case the impact duration was 30 usec and the impulse was 2.92 x 10_41b-sec.
These tests gave results very similar to Figures 40~42 and are presented
in Appendix IV.

Differential Interferometry

In each of the double exposure interferograms discussed thus far, the
stationary, undeformed specimen served as the reference image. Accordingly,
the fringe patterns shown in Figures 40, 41 and 42 provide a measure of
deflection referenced to the static undeformed beam. This approach would
not have been practical if large displacements had been involved. For
example, a large displacement between exposures would give rise to very
many fringes so finely spaced that recognition would not be possible.

An experimental procedure, termed "differential interferometry," was de-
vised to overcome the difficulties involved with large displacements.

This differential procedure involves taking two exposures of the beam
in rapid succession. The first laser pulse occurs at a time when the beam
is deflected by the transverse wave; a second pulse of the laser occurs a
short time later. The resulting interference fringe patterns can then be
interpreted to provide the displacement of the beam between the two ex-
posures. The procedure just described was used to obtain holographic
interferograms of a transverse wave propagating in the beam specimen. The
beam and loading conditions were the same as those described previously.
The first exposure of the hologram was made 25 usec after pendulum impact;
this provided the reference scene for the interferogram. The second ex-
posure of the hologram was made at t = 50 usec after pendulum impact. The
times of 25 and 50 usec were chosen so that results can be compared directly
with those of Figures 41, 42 and 43.

The differential fringe pattern which resulted is shown in Figure 44.
By counting the individual fringes and knowing that the beam was at rest
ahead of the wave, Figure 44 was interpreted to determine the differential
displacement between the two exposures. This differential measurement is
shown in Figure 45 by the solid data points. Also shown in Figure 45
is the differential displacement computed by subtracting the deflection at
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Figure 44 - Differential Fringe Pattern:
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t = 25 pusec from the deflection at t = 50 usec given in Figure 43. This
second set of data is shown by the solid line in Figure 45. Figure 45
shows that the differential displacements measured by the two techniques
agree to within a few percent. Differences between the two curves in
Figure 45 may be attributed to the non-repeatability of the impact. The
results of this test were particularly gratifying; they showed that
differential holographic interferograms can be used whenever structures
undergoing large displacements need to be .examined. This differential
technique has also been used to obtain vibration modes of a plate at
large amplitudes (.5 inches peak-to-peak); see Section 6.0.

Analytical Considerations

To set up the wave propagation experiment, an estimate was needed
for the magnitude of the impulse to be applied to the beam. In order to
answer these questions, a solution of the Timoshenko beam equations was
obtained for a doubly-infinite beam subjected to an impulsive transverse
load. The approach used parallels that of Dengler and Goland (29), who
obtained the bending moment responsé for this problem. The Timoshenko
Beam equations are given by

2 2

BL ¥ 4 12 (L - y) = o120 (5-1)

2 9x 2
90X ot
and

52 2 (9% 3

oA ST _w=xlac(iL- (5-2)
Sc2 2 ox

where y is the transverse deflection,

yp is the bending slope,

El is the bending stiffness,

k%AG is the shear stiffness,

pA is the mass per unit length,

pl is the mass moment of inertia of the cross section,
W is the transverse load,

x is the coordinate along the length of the beam, and
t is the time

The initial and boundary condition associated with Equations (5-1)
and (5-2) are

y(x,0) =0
é_z - o < X < o
at(x,O) =0
(5-3)

¥(x,0) =0

- ® < X < ®
al =
at(x,O) 0
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for a doubly-infinite beam which is initially at rest.

An analytical solution to the Timoshenko Beam equations was obtained
using Fourier and Laplace Transform Techniques. The analytical solution
was for a loading W(x,t) taken as

W(x,t) = Io S (x)s(t) (5-5)

where I is the. applied impulse (lb-sec.) and §(x)8(t) denotes Dirac-
Delta flnctions for a point load in space and an idealized impulse in
t:i_me. In order to readily invert the transforms involved, the prelim-
3 y analysis assumed that both wave speeds in the problem were equal
k“G/p = E/p). Although this assumption is physically unrealistic, the
resultlng response calculations were accurate enough to design the
experiment.

However, once the experiment had been performed, it was desired
to compare the results with a more refined analysis. To accomplish
this end, a computer program (Ref. 30) was used which solved Equations
(5-1) and (5-2) by the method of characteristics. In this case, the
applied load was taken in the form

W(x,t) = P(t)8(x) (5-6)

where the time~history of the form P(t) was assumed as

A sin %E 0<t=x<T
P(t) =
0 T<t<w

The duration, T, of the applied load was set equal to 100 usec, which
was the measured value of the impact duration. The amplitude, Ab’ was
scaled in such a fashion that the impulse og the applied load was made
equal to the measured impulse of 8.03 x 107~ lb-sec. That is,

T
Jlﬁ P(t)dt = Io = 8.03 x 10_3 1lb-sec.

o
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The computer program used

E/p = 1.967 x 105 in/sec = bar velocity

k‘JG/p =1.0 x 105 in/sec = shear velocity

which are characteristic of a rectangular aluminum beam.

&‘

and

The computer program resulted in a plot of deflection, y, vs. X,
the distance from the point of impact (the center of the beam). Computed
results are shown in Figure 43, for the times t = 12.5, 25, and 50 usec.
As indicated previously, the impulse used in the analysis was set equal
to the experimental value, and the experimental force-time history was
idealized as a half-sine pulse.

Discussion and Conclusions

The primary results of this study are shown in Figure 43, which
was derived from Figures 40 through 42 and the computer analysis. The
best agreement between theory and experiment was obtained for t = A = 50
usec after initiation of impact. In this case, the peak values of
displacement differed by about 3%, which is good agreement, considering
the approximations involved in the analysis and possible errors in
measurement.,

Theory and experiment agreed less well for A = 12.5 and 25 usec.
This lack of agreement at the early times is not surprising, when
Figure 40 and 41 are considered. These figures show that initially the
beam behaved much like a plate when impacted by the pendulum. For the
early times, the response was two-dimensional in nature, rather than one-
dimensional as assumed by Timoshenko Beam Theory.

The results demonstrate that pulsed laser holography can be used to
obtain reliable quantitative measurements for problems involving trans—
verse wave propagation. Holographic interferograms of the type presented
here can be interpreted to yield displacement (y) vs. space (x) at
individual discrete times (t,). These full-field results are in contrast
with the usual point measureiients (such as strain gages) which give time
histories of the event at discrete locations.

The holographic method used hereip is limited in that the displace-
ment must be at least A/4 = 6.83 x 107" inches for the first interference
fringe to form._ Also, since the pulse duration of our laser is approxi-
mately 10 x 107 seconds, the wave motion to be recorded must have a
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characteristic time longer than 10 nanoseconds. For many problems
involving transverse wave propagation in structures, the pulse duration
of the laser is short enough to effectively "freeze" the motion of the
structure. These features of pulsed laser holographic interferometry
make it attractive for problems involving wave propagation in rods, beams,
- plates, and shells., Some exploratory studies have been made by the
authors on transverse axisymmetric waves in a plate, and more work is
planned on flexural waves in cylindrical and conical shells.

The technique of differential holographic interferometry allows
the extension of conventional pulsed laser methods to include measurement
of large displacements. By making a series of differential holograms,
the experimenter can study large displacement phenomena which previously
exceeded the capabilities of conventional holographic. interferometry.

It is expected that these experimental methods will receive wider

application as more investigators come to appreciate the capabilities
of pulsed laser holography.
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6.0 SUGGESTIONS FOR FUTURE EXPERIMENTS

Introduction

This section of the report departs from the scientific description
of details and results presented in Sections 1.0 through 5.0. Instead,
this section describes exploratory studies in search for improvements
and new applications of holography; consequently, it contains the authors'
judgments and speculations concerning holographic techniques. Since the
ideas presented in this section are still under development, their outcome
is not yet certain.

Vibrations of Plates and Shells

Holography is particularly adapted to the study of vibrations which
are two-dimensional in nature, such as the flexural vibrations of plates,
membranes, and shells. Most of the early work using holography for vibra-
tion analysis made use of such two-dimensional structures (See Ref. 9-12).
Holography will work on curved surfaces as well as flat ones, and it has
been applied to turbine blades (Ref. 13) and cylindrical shells (Figure
46). Figure 46 shows the result of a time-—average hologram for a cylind-
rical shell vibrating in one of its flexural modes. The shell was excited
using a piezoelectric transducer, just as in the beam and plate experiments.

When curved surfaces are used, care must be exercised in interpreting
the fringe patterns to obtain mode shape data. The formation of fringes
is affected by the cosf terms in equation (3~2), and for curved surfaces
this angular term can be quite significant. For plate vibration work,
it is customary to make the angles Ol and 92 nearly zero and then forget

about them. In shell vibratioms (e.g., cylinders or cones) the fact that
© changes around the circumference must be included.

Accounting for this change in angle is not a major problem, and
future investigators can be expectéd to apply holography to the vibratioms
of shells and curved panels. Stiffened plates, sandwich panels, and
stiffened shell structures also represent potential areas for holographic
vibration analysis. Structures with cut-outs or discrete masses can
readily be analyzed by means of holography. The ability to give rapid,
area-type measurements means that holography will be used increasingly
for vibration studies of two-dimensional structures.

One particular experiment of considerable theoretical interest would
be the high-frequency vibrations of a cylindrical shell. Based upon the
results given herein for plates (Section 3.0), it appears possible to
detect shell modes on the order of m = 15, n = 20 (or even higher).

These high modes could be compared with a Mindlin-type theory for shells,
which would include rotary inertia and shear effects. (See Ref. 27).
Such high shell modes have not been observed previously and might show
unusual effects.
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Figure 46 ~ Time-Average Hologram of a Cylindrical Shell
Vibrating in a Flexural Mode
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Another area of application for holography appears to be in the vibra-
tion analysis of plates and shells at high temperature. When the surface
temperature of the structure exceeds 500°F or so, conventional vibration
pick-ups (such as capacitance or inductance probes) tend to run into
difficulties. Preliminary results indicate that holography can be used
for vibration studies of plates at temperatures as high as 1500 - 2000°F.
In fact, it appears that holography may be the only technique which is
practical at such temperatures.

Pulsed Laser Experiments on the Vibration of Large, Noisy Subjects¥*

Time-average holography and stored-beam interferometry are limited
in application to small amplitude vibrations. 1If large vibration ampli-
tudes are used with these holographic techniques, the interference fringes
crowd closely together in regions of high slopes and cannot be readily

distinguished from one another. For example, a slope of 6 x 10—4 radians
corresponds to a fringe spacing of 0.01 inches when light of 6328 Angstroms
is used. Larger slopes result in even closer fringe spacing. This limi-
tation on allowable vibration amplitudes is a fundamental drawback to
applying holography with large~scale, flexible structures.

Another limitation of the holographic techniques used to date for
vibration analysis is the fact that the entire system must be isolated
from background vibrations and noise. This isolation requirement presents
a problem when large-scale structures are involved.

To overcome these limitations of present techniques for holographic
vibration analysis, the use of pulsed laser holography appears very pro-
mising. Consider what happens if a structure is vibrating, sinusoidally
in a normal mode, and a double exposure hologram is made by pulsing the

laser once at time ty and again at time ty. From the first pulse, we

have the displacement

wl(g,t) = A ¢(§) sin wt

where 1

A is the amplitude,
®(x) represents the mode shape,
w is the wvibration frequency

and ty is the time of the first exposure
The second pulse at time t, gives the displacement

w2(§,t) = A @(?) sin wt2

*The work reported in this section was sponsored by TRW Systems and was
not conducted on contract NAS-1-8361. It is reported herein for purposes
of information exchange.
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The interference patterns which forms is a measure of the difference in dis-

placements at time t1 and t2' Thus, the interference pattern is proportional
to

A o(x) [sinwt

3]
)
€
[

1 - s:.nth]

Ko (x)

where XK is a constant representing the product A [sinwt., - sinth]. By

1

adjusting the times t, and t, to be close together, only a few interference

1
fringes will be formed, regardless of the amplitude of vibration. From this
fringe pattern, the mode shape 2(X) can be found. This technique of double~
pulsing thus eliminates the restriction of small amplitude vibrations.

In addition, since the duration of each pulse is on the order of 10—8
seconds, the recording of the hologram is not influenced by seismic dis-
turbances and other background noise. An example of a hologram of a
vibrating object made by this double-pulse method is shown in Figure 47.
The vibrating specimen was a piece of aluminum sheet, 6 inches wide and 36
inches long, supported at the center on the armature of a shaker. (See
schematic, Figure 48.) Only the right half of the specimen is shown in

Figure 47. The laser was pulsed at times ty and t, with a 50 usec delay

between pulses. Notice that the number of fringes formed was not unduly
large, although the plate was vibrating with a peak-to-peak displacement of
1/2 inch at the tip.

The vibration shape indicated by the hologram is compared with data
obtained by direct measurement and shown in Figure 49. The circled data
points in Figure 49 were obtained using a hand-held ruler and measuring
the peak-to-peak displacement at locations along the beam at one-inch
intervals. The solid line was obtained by counting the fringes in Figure
47, choosing as zero a point 14 inches from the tip of the beam. The data
have been scaled such that 115 fringes is equivalent to .55 inches, making
the first and last points of the two data sets coincide. 1In general, the
agreement between the two measurement schemes is quite good, inches with
the differences being less than 1/20 of an inch. This is within the
tolerance achieveable with the hand-held ruler.

Figures 47 through 49 demonstrate that pulsed laser holograms can be
made and analyzed in the manner just described. These results are partic-
ularly significant for future applications of holography to vibrationmns,
since they demonstrate that we are no longer limited to small amplitude
motions. From the experiment described here, the way to future holographic
vibration analysis of aircraft flutter models or large-scale structures
seems fairly clear.
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Figure 47 - Fringe Pattern from a Vibrating Plate
Using Double-Pulse Holography

Shaker

Hologram * Pulsed Laser

Figure 48 - Pulsed Laser and Vibrating
Beam Schematic Arrangement
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The reader will notice that this double~pulse technique does not show
up the nodal lines of the vibration mode. It may be advisable to use a
combination of time-average holography (to find nodal lines) and pulsed
holography (to determine mode shapes) in actual practice.

Transient Measurements Using a Photocell-Counter Technique¥*

Section 4.0 of this report discusses transient response measurements
using high-speed movies to record the fringe motion. As indicated therein,
considerable time was required to read the individual movie frames and to
reduce the data from them. This data reduction procedure involves counting
fringes and determining the direction in which the fringes are moving.

One means of automating the data reduction procedure is to use a photo-
cell (a photomultiplier tube) to "count" the fringes directly as they move.
To understand the use of the photocell, consider Figure 50. A stored-beam
hologram is made of the stationary object, and subsequent motion of the
object results in live interference fringes which can be used to trigger
the photocell. For example, as the object (e.g., a cantilever beam) moves
toward the hologram, fringes will form on the surface and they will move
up or down the beam (Figure 50), depending upon its slope. If the beam is
vibrating in its fundamental mode, the fringes will move toward the root
of the beam when the beam moves toward the .hologram. As each fringe passes
the point where the photocell is focused, the voltage output of the photo-
cell will drop. Between fringes, the light reflected from the cantilever
iljuminates the photocell and the voltage output reaches a maximum. Thus
as several fringes move rapidly along the beam, the output voltage from the
photocell will be a series of peaks and valleys, with each valley corres-
ponding to the passage of a fringe. Since the distance between fringes
(in a direction normal to the cantilever) corresponds to a displacement of
one-half a wavelength (A/2), the photocell output recorded on the oscillo-
scope can be directly converted into a displacement-time history.

A photocell arrangement of this type has been used at TRW to obtaimn
the displacement-time history of the free end of an aluminum rod which was
impacted by a ballistic pendulum. The results are shown in Figures 51 and
52, which show the photocell output and the displacement-time history,
respectively. Note that the time scale is in microseconds which gives an
indication of the high frequency-response capability of the photocell tech-
nique.

The method can be further improved by using the photocell output to
trigger an electronic counter, which would count the fringes. The counter
could be connected to a digital-to-analog converter. and the amalog signal
sent to an oscilloscope to give a displacement-time history directly.
Additional development work is needed for such an automatic system. The
end result would be a holographic displacement measuring device having high
sensitivity and good high frequency capability. Further work along these
lines is planned at TRW,and all indications are that the proposed technique
is feasible.

*This work was not performed on contract NAS 1-8361,
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It should be noted that the photocell technique provides displacement-
time histories at a point, rather than over an area. In this .respect, the
photocell technique is similar to methods of point measurement presented in
References 31 and 32.

Applications to Static Problems

The work reported herein has dealt primarily with the application of
holography to dynamic problems. As one might imagine, holography has also
been applied to static problems in applied mechanics. The purpose of this
section is to mention some of these applications to statics and to suggest
future work along these lines.

Holography can be used to good advantage in the field of photoelasticity,

as discussed by Fourney in Ref. (33). Regarding such applications, Ref.

(33) states, ''the holographic method holds much more potential than has thus
far been demonstrated, and it is felt that an efficient utilization of this
potential will yield significant advances in the area of photoelasticity

in the future." Since Fourney's paper appeared (in 1968), photoelasticians
have begun to use holography more and more, and advances continue to be

made.

While some researchers have been improving photoelasticity, others have
been applying holography directly for the measurement of in-plane strains.
Such results are reported in Ref. (34), which points out that holographic
interferometry forms a useful addition to conventional methods of stress
analysis. With holographic interferometry, no model of the structure need
be made, the method is very sensitive and no contact with the surface is
required, and the whole surface can be investigated at the same time,
rather than point-by-point. Very little work has appeared in this area
since the publication of Ennos' paper (34), and it seems that static stress
analysis represents a fruitful topic for future holographic studies. An
exploratory paper along these lines is Ref. (35) which discusses strains
near a crack tip and permanent deformation recorded by holographic inter-
ferometry.

Another natural application of holographic interferometry might be in
the static buckling of thin shells. For years experimenters have tried to
record the deformation pattern of the shell just prior to buckling, but
they have achieved only limited success. These small prebuckling deforma-
tion could be recorded using holographic interferometry as the shell was
being loaded. 1In addition, it might be possible to record the dynamic
deformation of the shell (as buckling initiated) by means of stored-beam
holography and a high-speed movie camera (see Section 4.0).

The examples of static problems where holography could be applied
have just been briefly illustrated herein. It is felt that the use of
holography for statics problems will grow rapidly as researchers recognize
this new area just waiting to be explored.
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APPENDIX A

SOME USEFUL EQUATIONS USED
IN THE FIELD OF HOLOGRAPHY

Introduction

Many papers have been written describing the phenomenon of holography
and holographic interferometry. Some of these papers on interferometry
present equations which serve to aid in interpreting the fringes which
result from double—-exposure, time—average and stored-beam interferometry.
Generally, only results of analysis are given with little or no regard
to presenting the step-by-step derivation.

To provide a review and a concise documentation of the equations
used in engineering applications of holography, this appendix has been
prepared. No claims as to the originality are made. The list of origina-
tors is large, and no attempt has been made to assign specific credits.
The reader who is interested in the original works can consult references
given in the body of the report.

HOLOGRAPHY

Image Recording

Holograms are made using coherent, monochromatic light sources, such
as lasers. The light from the laser serves to illuminate the object whose
image is to be recorded and to provide a reference beam. Figure Al shows
a typical set-up used to obtain reflected light holograms.

Reference Beam, R(x,y,z;t) A\
-

Laser Mirror

Film
plane ——
(hologram) Scene Beam, S(x,y,z;t)

Object

Figure Al: Typical experimental setup to
make reflected light holograms
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The amplitude of the reference, R, and scene beam, S, are given by

iwt
r(x,y,z)e "

R(x,y,z;t)

iwt
S(x,y,23t) = s(x,y,2)e w

respectively, where w is the frequency of the laser light.

During the recording process, the film responds to the intensity, I,
of light reaching it. The intensity is in turn given by the square of
the light amplitude, i.e.,

A'z = |R + S'Z (A-1)

where |A| denotes the absolute magnitude of A.
Since the film is exposed to the light for a finite time, Et’ its exposure,
E, is given by

I =

E

t
/Idt

o

Et
/ lR + sl2 dt
o]

E
t
f (RR* + SS* + RS* + R*S)dt

(o]

=1
[}

Et
/ (rr* + ss* + rs* + r*s)dt
W

0 Time independent; Standing Waves

=
I

(rr* + ss* + rs* + r*s)Et (A-2)
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Image Retrieval Process (Reconstruction)

The image is retrieved by illuminating the developed film (termed
the hologram) with light from a laser at approximately the same angle
the reference beam made with the hologram. during the recording phase as
shown in Figure A2.

Laser Eﬂ>‘ N\Mirror

Observer <1 '—— —_———

Hologram Virtual image
of the object

Figure A2: Image Retrieval Process
The fraction of light transmitted through the hologram is given by
T = (1 - kE) k = constant

Illuminating the hologram with a reference beam identical to the recording
reference beam yields

RT

R(1 - kE)

R - kRE

for unit exposure time, i.e., E 1, we obtain

t
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RT

R~k [‘rr* + ss¥*)R + rs*R + Rr*s]

1 - k(zrr* + ss*{]R - krs*R - krr*S (A-3)

since Rr*s = rr*se *" = rr*S. For our discussion only the last term,

~krr*S is meaningful. Careful inspection of this term shows that it
represents the original amplitude of the scene beam, S, altered in amplitude
and phase by the multiplicative factor -krr*. This suggests that the
3~dimensionality of the image is preserved. The intensity of this recon-
structed image is then given by

£ =¥ o e[
o
HOLOGRAPHIC INTERFEROMETRY

Double-Exposure

Suppose a hologram was made of an object having a scene beam
amplitude, S.,. If the object is strained and a second exposure made
corresponding to scene beam amplitude, S,, on the same hologram, then
upon reconstruction, two virtual images Will be seen when viewing through
the hologram. Their composite amplitude is given by

A = - krr* (sl + Sz) (A-4)

These two scene beams will interfere with one another constructively or
destructively, depending on their relative phase. Areas of destructive
interference will cause fringes (absence of light). The intensity of the
composite image, Ir’ is given by lAI or

*)

2 (A'S)

I = |al? = (krr®)?(s. +5.)(s5. " + 8
1 2 1

The two scene beam amplitudes, S, and S,, can be related by simple
geometry. Let 2 + 2, be the path of 1light taken by the scene beam when
exposing the fllm to %he unstrained object. Similarly, &', + &', is the
path length of the scene beam when the second exposure is made. “Then,
referring to the following Figure A3 we have
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2 2 2
! - -—
L 1 21 + m 2m21 cos 61
v 2 _ 2 2
L 5 = 22 + m” - 2m2,2 cos 62
1 1 1
Solving for & 1 and 2 23

1 L 1 L

2
L', =2, (1 + Lo --gg-cos ) )l/2 =29 (1 - B cos o ) for B o«<1
1 1 1 1 1 1

m 2 2m 1/2 m m
L', =2, QA +¢{—1)- == cos 8,) =28 (1 —~— cos 0,) for — << 1
2 2 '3 L 2 2 L 2 '3
2 2 2 2
. I Reference Beam 41§M1rror
aser
Object before
displacement
Object after
Hologram displacement
Figure A3: Phase change of light due
to the motion of the object
Therefore,
L - = - [} =
2 1 21 m cos el 21 L 1 m cos 61
or
' - - - _ LI
L 2 22 m cos 62 22 2 2 m cos 62
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Total pathlength change AL = (21 + 22) - (2'1 + 2'2)

m(cos ©

1 + cos 62)

The difference in phase is given by

5 A m(cos 8, + cos ©

If the scene beam, Sl’ during the first exposure is given by

then the scene beam, SZ’ during the second exposure is given by

. 27i

Sz - s e 1q5+ X m(cos 91 + cos 62) (A-7)
g%i-m(cos 61 + cos 62)

32 = S1 e (A-8)

Equation (A-5) becomes

2 2§l-m(cos 6, + cos 62) 2

= * %

Ir (krr#*) Slsl ll + e ‘
= (krr*)2 s 2 [2 + 2 cos %I»m(cos 61 + cos 62)
= 2k2 r 4 s 2 [l + cos (—il m{cos el + cos 62))
(a-9)

Note that the intensity given by Equation (A-9) has zeros indicating the
presence of fringes, namely, when

2w = (A-10)
1 + cos (A m(cos 61 + cos 62{) 0
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or

%1 (cos el + cos 62)m = (2n - D n=1,2,3,...
or
_ 2n - 1
™ = 2(cos 6, + cos 6.) A (a-11)
1 2
If el = 6, = 0, that is, normal incidence and reflection of the illumina-
ting light and normal displacement, then
m = 2n4- 1 A (A-12)

This says that a fringe will be formed whenever the body moves an odd
number of quarter wavelengths between exposures. Figures 40-42 in the
body of this report show examples of double exposure interferometry.

The subject is a rectangular prismatic beam which experienced a ballistic
impact at its center.

Time—-Average Holography

When making a hologram of an object which moves during the exposure
time, say of a vibrating body, the film gets exposed to light from the
object in each position the object assumes during the exposure. Hence,
the film is exposed according to (analogous to the derivation of Equation
A-2) ).

Et
E =/ (RR* + SS* + RS#* + R*S)dt
o]

Considering only the last term, since it alone contributes to the holo-
graphic virtual image, we get

E
t . . .
—-iwt + +
E = r*sf e wt lwt 1¢dt
o

E
t i¢
= r*s[ e "dt (A-13)
o
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where ¢ is the change in phase due to the motion. If the motion is
sinusoidal of the form m sin (Qt + ¢°), then

Et glr-]:-m(cos 6, + cos 8,) sin(Qt + @ )
V/F A 1 2 o’dt
E = r*s e
o
(A-14)

27 2n
= t*% — ==
r*s Et Jo (A m(cos 61 + cos 62)), where Et > 5

The amplitude, A, of the reconstructed image is given by (analogous to
last term of EquationA-3) )

% 27
—- — -— -— ——
A= kRE = kr#*rSE_ J ()\ m(cos 61 + cos 62))

The intensity, Ir’ of the reconstructed image is

2|27
Ir = Io Jo [)\ m(cos 61 + cos 92)] (A-15)

where I corresponds to the intensity if the object did not move during
the expgsure time. The intensity, I_, versus amplitude, m, is shown
schematically in Figure A4, Examination of Equation @ -15) suggests that
fringes will appear on the reconstructed image wherever the amplitude of
motion satisfies the condition

Ao,
i

m

T 27 (cos 6., + cos 62)

1

where o, are roots of the zeroth~order Bessel function, i.e.

Jo(ui) =0
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gﬂ-m(cos §]
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Figure A4: TIntensity vs. amplitude for time-
average holography

Figure A-5 shows the holographic reconstruction of a time average hologram
made of a vibrating plate. Also shown is the mode shape as determined by
interpreting the fringes.

A second example of time-average holography is that of making a
hologram of an object moving at a constant velocity. Suppose the velocity
of the surface is given by v; then proceeding in a manner similar to the
sinusoidal case discussed above, one finds the intensity of the recon-
structed image is given by
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i2m (cos 8, + cos ez)vt 2

: e A 1
Iv f dt
T

o

12n (cos 6, + cos 6,)vt Et 2
Ae - 1 2

A
+ cos ez)v

27i(cos ©

1 0

i2n 2
A 2 X (cos 61 + cos ez)vEt

+ cos Bz)v € -1

27i(cos 8,

I
2

- A 2n
= 2 |13 i(cos 6. ¥ cos 6,)v [? cos (x (cos 6; + cos ez)VEé)}

1

2
_ A . 2fm
= (ﬂ(COS el Toos 62)V) sin (A.(cos 61 + cos ez)vE;)

Note that this function has zeros whenever

s

0y (cos el + cos 92)VEt =ar , n=1,2,...

This suggests that areas of the object which move with a velocity

v = nA
(cos 91 + cos 62)Et

will be covered with a fringe., To get a feeling for the velocities,
assume a ruby laser (A = 6943A) is used to expose the subject for
50 nanoseconds, and 6, =~ 6_ = 0.

1 2
Then
-8
_n 6943 x 10_9 - 694.3 p &
2 x 50 x 10 sec
v = .0007 n cm/us
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A more convenient way of expressing this condition may be in terms of
displacement during the exposure, (ie vEt) resulting in

ni

cos 61 + cos 62

vEt =

This equation says that if a particle moves at constant velocity .an inte-
gral number of half-wavelengths during an exposure, it will be covered by
a fringe.

Stored-Beam Interferometry

Stored~beam interferometry usés a hologram to store an image of an
object which can be later compared to the actual object. This is
accomplished by making a hologram of the object and carefully replacing
it into the same position it assumed during the exposure. When looking
through the hologram at the object, an observer will see two images. One
is due to the interaction of the reference beam with the hologram
(recoustructed image) and the second being the object itself. The
amplitude of light formed by the hologram is -krr* S (Equation A-3).

The object scatters light denoted by S. The amplituges sum resulting in
an amplitude

A

S —-krr#*S
o

The eye of the observer integrates the intensity resulting in

1r=/

If the object is sinusoidally vibrating, then S can be related to the
stationary amplitude, So’ to yield S = 501¢ ' The above integral then
becomes

2

S -krr*S dt
o

S el¢ -krr*S 2 dt
o o
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where

@ = —Z-Em(cos ]

: + cos 62) sin(Qt + ¢o)

1

Then

]
I

J/ﬁls~2 (ei¢ -krr#*) (e -1¢ -krr#*)dt

2[ (1 ~krr* el¢ -—krr*e—.:m + k2 (rr*)z) de

If we assume the two images are of equal intensity, ie, (krr*)2 = 1,
then

]

I = 10/2- (ei¢ + e—i¢)dt

where IO is the intensity of the scene bean.

Then
2m

[}
1

r 2% A

2on T T 27

o [; - Jo e m{cos 61 + cos 62))]
I 1-~-J 2£-m(cos 6. + cos 8,)

o ol 1 5%

This equation suggests that when the hologram has been precisely reposi~-
tioned and there has not yet been any motion (ie m=0) the intensity, I,
is zero. That is, the observer sees the object as black. It is
interesting to note that this is the only condition that results in

I = 0. The fringes seen when viewing the vibrating object through the
stored beam interferogram are shades of gray as shown by Figure A6.

Iow w 2
e 2 - 2 cos | — m(cos el + cos ez)sin(szt + ¢o)> dt
o
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Figure A7 shows one mode of a 8" x 10" vibrating plate as seen through
This plate was oscillating at exactly the same

a stored beam hologram.
It is seen that the data reduction process

amplitude as in Figure AS.

Figure Ab6:

2n
X

15

m(cos 61 + cos 62)

Intensity vs. amplitude for
stored-beam holography

to obtain the amplitude gives equal results.
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APPENDIX B
ADDITIONAL BEAM VIBRATION MODES

This appendix is intended as a supplement to Figures 6, 9, and 10,
which are discussed in the body of the report. The figures presented

here are from time-average holograms of the cantilever beam vibrating in
various resonant modes.

The mode number, m,and the experimental resonant
frequency, f, are given in the figure captiomns.
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(a) m=5, f=500cps

zm.‘

[Xy

(b) m=10, f = 2214 cps

Al

(c] m=12,

—

= 3262 cps

(d) m=13, f = 3843 cps

Figure B1 - Beam Vibration Modes
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(a) m=14, f =4477 cps

(c) m=16, = 5870 cps

A

(d) m=17, f = 6640 cps

Figure B2 - Beam Vibration Modes
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(a) m=18, f = 7454 cps

(b) m=19, .f= 8308 cps

(¢) m=20, f =9204 cps
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=13

(d) m=21, f =10121 cps

Figure B3 - Beam Vibration Modes
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(b) m=23, f=12,111 cps
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(c) m=25, f=14,200 cps

(d) m=26, f=15,365 cps

Figure B4 - Beam Vibration Modes
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(a) m=27, f=16,401 cps
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(¢) m=29, f =19,085 cps

(d}) m=30, f= 20,336 cps

Figure B5 - Beam Vibration Modes
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(a) Torsional Mode f = 6,010 cps

(b) Transverse Mode f = 39,230 cps

Figure B6 - Beam Vibration Modes
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APPENDIX C
ADDITIONAL PLATE VIBRATION MODES

This appendix is intended to supplement Figures 18, 19, 20 and 27,
which are discussed in the body of the report. The figures presented
here are from time-average holograms of the simply-supported plate
vibrating in various resonant modes. The modal numbers, m and n, are

given in the figure captions together with the experimental resonant
frequency, f.
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Figure C3 - Plate Vibration Modes
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Figure C4 - Plate Vibration Modes
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Figure C5 - Plate Vibration Modes
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Figure C6 - Plate Vibration Modes
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APPENDIX D

TRANSVERSE WAVE TESTS
(1/4 - inch Steel Pendulum Ball)

This appendix contains the results of wave propagation tests made
using a 1/4 - inch steel pendulum ball. This small ball was used to
reduce the duration of impact (time in contact) to 30 usec. The associated

impulse imparted to the beam was approximately Io = 2.92 x 10-4 1b-sec.

The accompanying photographs were made from interferograms taken at times
of 12.5, 25, 50 and 70 usec after impact. These results are intended

to supplement Figures 40, 41, and 42, which are discussed in the body of
the report.
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{a) 12.5 usec after impact {b) 25 usec after impact

(c) 50 usec after impact (d) 70 usec after impact

Figure D1 - Bending Wave in a Long Beam
(174" - Diameter Pendulum Ball)
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